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In this paper we present exact results for the critical exponents of interacting 
self-avoiding walks with ends at a linear boundary. Effective interactions are 
mediated by vacancies, correlated and uncorrelated, on the dual lattice. By 
choosing different boundary conditions, several ordinary and special regimes 
can be described in terms of clusters geometry and of critical and low- 
temperature properties of the O(n= 1) model. In particular, the problem of 
boundary exponents at the O'-point is fully solved, and implications for 
O-point universality are discussed. The surface crossover exponent at the special 
transition of noninteracting self-avoiding walks is also interpreted in terms of 
percolation dimensions. 
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1. I N T R O D U C T I O N  

Surface critical phenomena have been extensively studied in recent years.~l 
For systems with two bulk dimensions, the critical behavior at boundaries 
is interesting mainly for theoretical reasons, but may be also particularly 
important in the discussion of difficult universality issues. An example of 
this, directly connected with the results presented here, is the controversy 
over the universality of the so-called O- and O'-points for models of linear 
polymers.(2 19),4 
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A linear polymer in the presence of a wall can be modeled by a 
self-avoiding walk (SAW) on a semi-infinite lattice. The linear boundary 
represents the wall. Suitable interaction energies can be attributed to 
contacts of the SAW with the boundary and to close approaches of 
nonconsecutive walk sites (monomers) along the chain. 

Upon increasing the energy of adsorption on the wall, the polymer 
undergoes the so-called special transition, which separates the ordinary, 
desorbed critical regime from the adsorbed one. (2~ Monomer-monomer 
attraction energies can determine the O-collapse transition, (22'23) in which 
the polymer passes from a swollen, coil structure, with nontrivial fractal 
properties, to a compact, globular one. 

Substantial progress in the field of surface critical behavior in two 
dimensions has been made on the basis of conformal invariance. (24'z5) In 
particular, for self-avoiding walks, this approach allowed the conjecture of 
exact values for several boundary exponents. (25"21) As an example, which 
will concern us here, the presence of an attraction between walk and 
boundary was studied, leading to exact results for the SAW special surface 
critical regime. (21) However, conformal invariance has so far only been suc- 
cessfully applied to SAW problems without self-interaction. This excludes 
intriguing situations, like that occurring when both monomer-boundary 
and monomer-monomer interactions are present, which can result in 
interesting multicritical phenomena, such as the special O-point, at which 
adsorption and collapse occur simultaneously. ~15) 

The introduction of models with percolation vacancies was an impor- 
tant breakthrough in the study of bulk properties of self-attracting SAW, 
which for the first time allowed an exact determination of critical exponents 
at the so-called O'-point. (2'3) The basic idea of this method, (3) which 
elaborated on an earlier proposal by Coniglio et al., ~2) was to use annealed 
vacancies as mediators of effective interactions in a SAW problem. Under 
suitable conditions, one can then establish an identity between SAW and 
cluster hull statistics, which leads to a determination of bulk exponents, 
e.g., by connecting them to those of the C(n) model with n = 1. A main goal 
of this work will be to show the power of the vacancy approach to surface 
critical phenomena of the O'-point and other models. 

In ref. 3, a prediction of the entropic surface exponent at the O'-point 
was also attempted by exploiting previous results for the (9(n) model with 
boundary. (26) This prediction was the cause of a long-standing controversy, 
since numerical work always failed to confirm it in more standard 
models. (7'15) This gave rise to a conjecture of nonuniversality for different 
O-point models as a possible explanation of the discrepancy. 

A step forward in the understanding of surface critical behavior at the 
O'-point was recently made in ref. 16, where the present authors showed 
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that the value of the ordinary entropic surface exponent of ref. 3 should 
instead be attributed to the special one. This progress followed from the 
first detailed study of the effects of boundary conditions on a SAW model 
with percolation vacancies, and eliminated a major source of controversy 
over O-point universality. 

In the present paper we develop further these ideas and methods and 
provide for the first time an exact determination also of the ordinary 
entropic surface exponent at the O'-point. This step makes our knowledge 
of the O'-point complete. Further interesting results can be obtained when 
there is a correlation between the vacancies. In a previous work (27) the 
present authors showed that it is possible to determine exactly the bulk 
exponents in the presence of correlated (Ising) percolation vacancies. This 
allowed us to identify a new universality class of multicritical behavior for 
interacting SAW in d =  2. 

Here we discuss in detail the SAW surface behavior at this multicriti- 
cal point following lines similar to those of the uncorrelated case. When 
correlated vacancies are present, there is a richer variety of boundary 
conditions one can impose on both walks and vacancies. Correspondingly, 
two distinct ordinary and one special regime can be exactly characterized, 
through an identification with Ising model exponents. 

This paper is organized as follows: in Section 2 we review briefly the 
O'-point model of refs. 3 and 16 and discuss fully its surface critical 
regimes, in particular the ordinary one. Section 3 is devoted to the case of 
SAW on correlated vacancies. In Section 4, on the basis of the vacancy 
concept, we discuss also the relevance of percolation geometry to the 
special surface crossover behavior of noninteracting SAW in d = 2 .  
Section 5 is devoted to conclusions. 

2. O R D I N A R Y  A N D  S P E C I A L  S U R F A C E  
E X P O N E N T S  AT  T H E  |  

Let us consider a semi-infinite hexagonal lattice, as sketched in Fig. 1. 
Each hexagon is occupied or vacant with probability p, or 1 -  p, respec- 
tively. This specifies a percolation problem on the semi-infinite, dual 
triangular lattice. For  this percolation problem we choose open boundary 
conditions, i.e., the hexagons touching the border are also occupied with 
the bulk probability p. 

For each percolative configuration C, with probability P(C), we 
separately consider SAW of two types. In the first case ( a ) the  walk is 
never allowed to step on the edges of an occupied hexagon. In the second 
(b) edges of vacant hexagons can never be visited. 
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Fig. 1. Occupied (shaded) and vacant (white) hexagons in a given configuration. Examples 
of type (a) and type (b) walks are given. The type (a) walk has 3/2 =4,  N3 = 1. Notice that 
the type (b) walk cannot step on the boundary. 

The grand canonical generating function of the SAW problem is, in 
both cases, of the form 

Z(K ,p )=ZP(C)  Z K'W' (2.1) 
c { W}c 

where { W}c indicates the set of SAW, W, compatible with C, with ]WI 
steps, and, for example, one end at a given origin O. Alternatively we can 
replace W by a self-avoiding ring N'. Here K is the step fugacity and the p 
dependence comes through P(C). By performing the summation over C 
first, the generating function becomes 

Z(K, p) = ~ p(p)H(w) KiWi (2.2) 
w 

where now the sum is over all SAW and p(p)= 1 - p ,  or p in cases (a) and 
(b), respectively. H(W) represents the number of distinct lattice hexagons 
whose edges are visited by W. 

It is easy to check (3) that, for an open walk which never touches the 
border, 

H =  [W[ + 1 -Nz (W) -2N3(W)  (2.3) 

where N2 and N 3 are the numbers of hexagons visited, not consecutively, 
2 and 3 times, respectively, by steps of W. So, the effect of percolation 
vacancies is to induce local attractive interactions for the walk, which allow 
for collapse. In contrast to most common models, here one has not only 
nearest-neighbor interactions, but also a special subset of next-nearest- 
neighbor interactions. (2'3~ For that reason the collapse point of this model 
is called the O'-point. (2) 
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As long as one considers walks within the bulk and fixes p = 1/2, the 
percolation threshold on a triangular lattice, there is no difference between 
cases (a) and (b). Indeed p = 1/2 identifies the bulk O'-point. As shown in 
ref. 3, at the O'-point one can determine the exponent v o, by exploiting the 
fact that a self-avoiding ring of type (a) or (b) at K =  K o, = 1 has the same 
statistics as the hull of percolation clusters. This implies that the grand 
canonical average radius of gyration of the ring behaves as 

~ Kl~ tp (p )  H(~) R ( ~ )  
R(K,  p)  = Y'.~ KI~tp(p)H(:~ ) (K o, -- K) ~.o,, 

(2.4) 
1 

K ~ K o , =  1 - ,  P 2 

where ~ is a ring with IN[ steps and gyration radius R(N) with respect to 
the center of mass. For  economy of notations the grand canonical average 
is also indicated by R. Here v o, is equal to the reciprocal of dH = 7/4, the 
hull fractal dimension of percolation clusters. (28~ 

By considering the asymptotic behavior of the two-point bulk correla- 
tion function, 

~(x,  y, K, p) = ~ KIWIp(p) ~ w ) ~  - Ix - y[-7o, (2.5) 
W, OW=x,y 

where OW indicates the endpoints of W, when p = l / 2 ,  K = K o , ,  and 
Ix - Yl ~ 0% one can also determine t/o,. 

Indeed, at K = 1 and p = 1/2, as discussed below, this correlation func- 
tion can be identified with ( S x S y )  for an Ising model at zero temperature. 
One concludes that, in view of the existence of long-range order in the 
Ising model, qo, = 0.~3) This also implies that Yo, = V o , ( 2 -  t /o ' )= 8/7, where 
7o, is the bulk entropic exponent for walks with one end fixed. 

The above identification follows from the fact that, on the basis of 
Eq. (2.1), in case (a), for example, N can be represented diagrammatically 
as a sum over self-avoiding paths connecting x to y on the hexagonal 
lattice, in the presence of self-avoiding rings (percolation cluster hulls), 
which are mutually nonintersecting and do not intersect the path. Each 
diagram of this type (a typical contribution is sketched in Fig. 2) in the 
sum has the same weight, due to the choice of parameters ( K =  Ko, = 1, 

P = Pc = 1/2). 
Now consider an Ising model on a hexagonal lattice with reduced 

Hamiltonian K~singZ<xy>SxSy, the sum being restricted to nearest 
neighbors. An expression of (Sx Sy)  in term of high-temperature diagrams 
clearly produces the same sum as that in N when tanh(K~sing)= 1, i.e., at 
zero temperature. 
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Fig. 2. Schematic representation of a contribution to ~ in the bulk. The heavy line joining 
x to y represents a self-avoiding path on the lattice, all contained in a - region. The rings 
correspond to hulls separating vacant ( - )  from occupied (+) hexagons. 

We now turn to a determination of surface critical exponents at the 
O'-point. To this purpose we consider rings of type (a) which have to pass 
through a given point O of the boundary. It is easy to check that H(N)  for 
such a ring becomes (~6) 

H ( ~ )  = IN[ - N2(~  ) - -  2N3(N) - Ub(N) (2.6) 

where Nb(~ ) is the number  of points of the border belonging both to 
and to separation edges between hexagons in the last upper row (see 
Fig. 3). This last result indicates that the boundary exerts an effective 
attraction on the ring, since configurations with higher N b are favored. 
For a ring experiencing attractive interactions with itself and with a 
boundary we would expect the possibility of both a bulk O transition and 
a surface adsorption special transition. (1) If we generalize the model in 
Eqs. (2.1)-(2.2) by making the replacements 

KI~I(1 _ p)l~l __, K,I~I 

(1 -- p) -N2(.~)-2N3(.~) ~ exp CO [ N 2 ( ~  ) -k- 2N3(N)] (2.7) 

(1 - p) -N~(e) ~ exp [cOsNb(~) ] 

with ~o and ~o s having the meaning of independent reduced attraction and 
adsorption energies, respectively, the above transitions are expected to be 
marked by multicritical lines in the (co, eJs) plane (Fig. 4). At all points 
below the adsorption line, the surface critical behavior is ordinary. For 
example, a ring attached to the boundary by one end, asymptotically, has 
on average a vanishing fraction of steps on the boundary. Above the same 
line this fraction is asymptotically nonzero. 
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Fig. 3. Type (a) self-avoiding ring, with N2=3, N~=0, and Nb=4. 

If we consider 

with 

( N  b ) = ~ log Z (2.8) 

Z = ~ K  'l~el exp{o)[N2(N) + 2N3(N)] } exp[oOsNb(N)] (2.9) 

we expect that 

(Nb)  ~ [K~.(~o) - K'] ~ ,.~ const 

and 

( N b )  ~ [g~(a), e ) , ) - K ' ] - '  for 

for K' --+ K•(co) (2.10) 

K'--+ K'c(CO, cos)- (2.11) 

0)$ 

J 

03 

Fig. 4. Qualitative diagram for different critical regimes of a SAW rooted on the boundary 
and subject to self-attraction (~o) and adsorption (co,). The vertical segment separates swollen 
from collapsed situations, while the other line marks the transition from ordinary (lower 
region) to adsorbed (upper region) regimes. The special O-point is marked by a heavy dot. 
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for the ordinary and adsorbed regimes, respectively. For (co, cos) on the 
adsorption special line, one expects 

(Nb) , ,~[K'c(co)-K']  -*s for K'--+ K'c(co)- (2.12) 

where 0 ~< ~b, ~< 1 is the surface crossover exponent. In Eqs. (2.10), (2.12), we 
have taken into account that the critical step fugacity K~ does not depend 
on co, for ordinary and special regimes. In all cases 

( ] ~ [ )  --~ ( K ~ -  K') -1 for K ' ~ K ~ -  (2.13) 

By considering that in each ring configuration 

N b - 1 
- - < ~ N s ~ N b  (2.14) 

2 

with N~ representing the number of steps on the boundary, we conclude 
that the behaviors (2.10)-(2.12) apply also to (Ns) .  

Fixing p = 1/2, we can see from Fig. 4 that our model (2.4) is clearly 
on the vertical theta line as far as bulk properties are concerned. 

The question is to decide which surface regime applies to a ring 
passing through a point on the boundary. With the boundary conditions of 
type (a) specified above, the ring is statistically indistinguishable from the 
contour of a cluster in the percolation problem on a semi-infinite triangular 
lattice. If we consider ( N , )  for ring configurations passing through O, we 
obtain the same result as when considering the average number of steps on 
the border for hulls enclosing occupied hexagons and passing through O. 
In both cases the allowed configurations generated by (2.1) consist of a 
self-avoiding ring, which is constrained to avoid the remaining hulls in the 
system. By construction, the statistical weight of any configuration for the 
ring problem is the same as for the hull case [the weight in Eq. (2.1) is 
actually the same for all configurations]. 

From conformal invariance we know that the fractal dimension of the 
intersection of a percolation cluster with a boundary is equal to  2/3. (25,29) 

If we put K'o,=K~(coo,), with O)o,=log 2, the radius of gyration of 
the ring must grow like 

R(K' ,coo,)~(K'o , -K')  4/7 for K'~K;9-  (2.15) 

consistent with the hull fractal dimension d,t = 7/4. On the other hand we 
must also have 

( N s ) ~ R 2 / 3 . ~ ( K , o _ K , )  8/21 for K'---*K~- (2.16) 



Boundary Critical Behavior of 2D SAWs 29 

This equation, compared with (2.12), tells us that the type (a) ring is 
actually at the special O'-point, the point of intersection of the O and 
special lines in Fig. 4. This is indeed the only point on the ~o = 09 o, line at 
which a behavior of the form (2.12), with 0 < ~b+ < 1, is expected. We thus 
conclude that the exact value of the surface crossover exponent at the 
O'-point is ~b+ = 8/21. This prediction has also been confirmed by numerical 
analysis. ~16) 

In order to determine surface entropic exponents at the special 
Or-point, we consider f#l(X, y, K, p) for a SAW(a), with both x and y lying on 
the boundary. This if1, at K = 1 and p = 1/2, coincides with the correlation 
function of the T =  0 Ising model on a semi-infinite hexagonal lattice. 
Indeed, all diagrams for fq~ are given by a SAW joining x to y, surrounded 
by closed self-avoiding rings representing the hulls of the percolation 
clusters in the given C configuration. All such diagrams (see Fig. 5) have 
the same weight at p =  1/2, K =  Ko,= 1, namely, the probability of the 
corresponding C configuration. For a T =  0 Ising model on a hexagonal 
lattice, the correlation (SxSy) ,  up to a normalization, is also given by 
such diagrams, where to each step of the walk or of the closed rings is 
attributed a factor tanh(Kx+ing)= 1. The normalization in this case is given 
by the Ising partition function, that is, the sum over all configurations of 
self- and mutually avoiding rings. 

Since at T = 0 ,  the d =  2 Ising model has long-range order also at a 
boundary, we have that 

(SxSy)  -+ const for I x - y l  ~ oe (2.17) 

Thus, by identification, we must have that 

fql(x, y, 1, 1/2) ~ 1/rx - Yl ,s ~ const (2.18) 

when x and y belong to the boundary and I x - y l  ~ ~ .  Equation (2.18) 
entails r/S = 0. By standard scaling we also get ?isp = v o , ( 2 -  ~1o,/2- r/s/2)= 
8/7, ?~sp being the entropic exponents for walks with only one end fixed on 
the boundary. 

Fig. 5. Typical diagram contributing to ~ql for type (a) walks. 
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This completes the determination of special O'-point surface 
exponents, as already reported in ref. 16. 

The problem of ordinary W-point surface behavior is solved below. 
When considering a SAW of type (b) in the presence of the boundary, 

we immediately realize that their statistical properties must be different 
from those of type (a) even ifp = 1/2. Due to the different constraints, type 
(b) walks can never step on the border. Indeed they have to develop within 
fully occupied regions. Actually, by comparison with case (a) we argue 
that the border is not exercising an attractive action now, but rather a 
repulsion, on the walk. With reference to Fig. 4, this means that the point 
p = 1/2, K =  1 for type (b) SAW attached to the border should fall some- 
where in the interior of the vertical segment of ordinary O'-point surface 
transitions. 

In order to predict the correct t/s for a type (b) SAW, we consider the 
diagrams contributing to (41 with x and y both fixed close to the boundary, 
for example within one lattice spacing from it, as sketched in Fig. 6. 

With reference to Eqs. (2.1) and (2.5), it is clear that in each configura- 
tion C from which nonzero contributions to f#l arise, there must be an 
occupied cluster whose hull encloses both x and y, together with the con- 
necting self-avoiding path (Fig. 6). If the chosen distance of both x and y 
from the boundary were larger, there would of course be more than a 
single hull enclosing both x and y, but their number would still be odd (see 
below). 

In order to discuss fgt in this case we have to rely on results for the 
so-called watermelon correlation functions of the (9(n) model. In the 
geometrical lgop version of this model, watermelon correlations with L legs 
are defined as 

GL(x, y, M ) =  ~ W(cdL)/~fr (2.19) 
CgL(X, y) / 

where (d L represents all diagrams with L self-avoiding paths joining points 
"at" x and y, in the presence of self-avoiding loops. Loops and paths are 
also mutually avoiding, of course. The weight for each such configuration 

| 

Fig. 6. Typical diagram contributing to f#l for type (b) walks. 
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is W(cgL) = MUbn ut, where Nb and Nt are, respectively, the total numbers of 
hexagonal bonds and of closed loops in cgL, and M is a step fugacity. 
Diagrams contributing to ~ ( ~  are made only of self- and mutually avoid- 
ing loops, and are weighted in the same way. Now, when x and y are 
chosen near the boundary of the hexagonal lattice and one puts M = n = 1, 
one concludes that ffl(x, y, 1, 1/2),-~ G3(x, y, 1). Indeed, up to details in the 
neighborhood of x and y the diagrams of ffl coincide and have the same 
weight as those of G3. 

Correlation functions of the type (2.19) in the bulk have been studied 
for spin models in the framework of the Coulomb gas and conformal 
invariance approaches to d = 2  critical behavior/3~32) On the basis of 
conformal invariance, refs. 33, 26, and 34 were also able to conjecture the 
surface r/exponents for watermelon correlation functions whose points are 
on a semi-infinite linear boundary. 

By putting, r/s = 2x~, they predicted 

aL(x ,  y) ~ Ix -- Yl-2xf 

L given, for the case n = 1, by the formula with X s 

L ~L 2 __ x s = ~L (2.20) 

which holds in the low-temperature phase. 
The case L = 3 is the relevant one for the ~/s exponent of ~#1 for a type 

(b) SAW. From (2.20) one obtains x s3-- 1 = r/s/2. This implies that 71o = 
v(2 - r/o,/2 - r/J2) = 4/7. 

Going back to the case of a type (a) SAW for a moment, we notice 
that in such a case ffl ~ G1, thus implying that the special r / s=2x ~ =0 ,  
which is consistent with the conclusion already drawn above, taking into 
account the low-temperature Ising long-range order. 

This value of 71o, as discussed above, must apply to SAW at the 
O'-point in the ordinary regime, as far as surface behavior is concerned. 
Indeed, this value turns out to be fully consistent with the numerical results 
obtained so far for both the standard O-point model (7'15'18) and for the 
O'-point model, (~6) when attraction effects from the boundary are not 
effective, or are avoided by considering a particular class of walks. 

To conclude this section, we show how the watermelon exponents 
(2.20) can also be used for an alternative independent determination of ~b~. 

Imagine including in Z the weighted sum over all (a) self-avoiding 
rings which touch the boundary at least at one point, no matter which one. 
If we consider a finite portion of boundary of length L and the corresponding 
quantity ZL, it is easy to realize that, at K =  1, p = 1/2, 

1 1 ~2 fo c 
c ; Z - - L ~ 2 Z c ~  d x G 2 ( O , x )  for L ~ o o  (2.21) 

822/73/1-2-3 
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where the integral is along the one-dimensional boundary. The derivative 
with respect to m s in the case of our O'-model can be performed by 
formally attributing a value Ps r to the probability of occupation of 
boundary hexagons and then performing ~/Ops at Ps = P = 1/2. In Eq. (2.21) 
G 2 is the n = 1, T = 0  watermelon function, in which two self-avoiding 
paths join nearest-neighbor sites at O to nearest-neighbor sites at x. 

Since 

G2(O, x ) ~  1/Ixl 2x~ for Ix I --* oo (2.22) 

where, according to (2.20), x s2 = 1/3, the quantity in Eq. (2.21) grows like 
L ~/3 for L -+oe .  The quantity on the left of Eq. (2.21) clearly has the 
dimension - 1  +2ys in terms of length, and simple finite-size scaling 
considerations imply a behavior 

lim t 02 log Z 
L ~  L ~ 2  s ( K o , - K )  ':~ for K ~  K o, (2.23) 

On the other hand, the above results also imply 

(1 - 2ys) vo, = V o , -  2fbs = -�89 (2.24) 

which means Ys = 2/3 and ~bs = 8/21, as already derived above. 
A final remark is in order here concerning the fact that qs for type (b) 

SAW is the same as for the watermelon function G 3. It is clear that, if 
points x and y are fixed at a larger distance from the boundary, the con- 
tribution of diagrams with an odd number of hulls enclosing x and y arises. 
This means that, together with the contribution of G3, contributions from 
watermelon functions Gs, G7 ..... should add into the asymptotic behavior 
of ~1- These higher L functions are, of course, less dominant asymptoti- 
cally, and thus provide only scaling corrections to f#l. 

3. W A L K S  ON C O R R E L A T E D  ISING V A C A N C I E S  

We now consider a modification of the model in the previous section, 
where the two possible states of each hexagon are characterized by a spin 
variable a =  1 ,  and these Ising spins interact via nearest-neighbor 
couplings. 

The new problem can be conveniently formulated fully in terms of spin 
language. We introduce, for each site on the hexagonal lattice, an 
n-component spin S-= (S 1, S 2 ..... Sn), with S2=n,  and on each site of the 
dual triangular lattice we put an Ising spin a =  _+1. 5 If nearest-neighbor 

5 In the previous section we indicated by S the spin components of an Ising system on the 
hexagonal lattice. Here we switch to a to indicate Ising spins on the dual lattice. 
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edges on the hexagonal lattice are indicated by l and the extrema of the 
edge l*, dual of l, by i*(l) and j*(l)  (Fig. 7), the Hamiltonian 

-flH(S,a)=K~(S'SI,(I+-a'w))(I+aJ*(')) +L~(a~r)z. (3.1) 
t 2 2 l* 

generates the statistics of (a) and (b) rings in the n ~ 0 limit if - and + 
signs are chosen, respectively. In Eq. (3.1), (S 'S)I  and (aa)t,  indicate the 
products of spins at the extrema of edges l and l*, respectively. So, in the 
example in Fig. 7 we have (S" S)l = ~ =  1 S~S~ and (acr)~. = ai~l.)aj~.). 

If we normalize the trace over S in such a way that Trs 1 = 1, for any 
n, the partition function becomes, to leading orders in n, 

Z = Trs Tr~ exp( - fill) 

~---/ ising(L) 1 + n -~- 2 

+ n  ~ e x p ( -  2L ISI) K l a ' / ~  e x p ( -  2L ISI)+ C(n2) t (3.2 ) 
Z',~ /Z"  ) 

In Eq. (3.2), Z~sing is the partition function of the triangular Ising model 
with coupling L and Nz is the total number of bonds of the hexagonal 
lattice. In the last term the sum in both numerator and denominator is over 
all collections Z" of loops on the hexagonal lattice which are self- and 
mutually avoiding, with total length ]SI. 

In the numerator the S 's  are summed simultaneously with a self- 
avoiding ring 9~ which also avoids S. So, this last term now describes a 
self-avoiding ring with step fugacity K in the presence of Ising vacancies on 
the dual lattice. The above derivation shows that the statistics of such a 
ring is obtained in the limit as n goes to zero from the Hamiltonian (3.1). 

I I 1 
! 

I 
[ 

\ 

Fig. 7. 

i I I I ~ ! r 

The heavy edge is a bond l with extrema i and j on the hexagonal lattice, i* and j *  
are the extrema of the dual of l (dotted) on the triangular lattice. 
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The average radius of gyration of the ring can be written as 

Z" ~comp.withX l 

X{~com~p.withs(tl~Ki)[exp(--2L)]lsl}-I (3.3) 

where the product over l~ N contains clearly [NI terms. 
In this product, we indicate by Kb the step fugacity associated to the 

bond b, which is just K on the basis of Eqs. (3,1) and (3.2). We introduce 
this more general notation in view of the fact that modifications to the 
fugacity for steps on the border will be considered below. Notice that when 
L = 0, we recover the case of uncorrelated vacancies, described in the 
previous section. In ref. 27 it has been shown that the ring described by 
Eq. (3.3) in the bulk is critical at K =  Kc = exp( -2Lc) ,  with L C representing 
the critical Ising coupling of the triangular lattice. Furthermore, in these 
conditions the ring has the same statistics as the hull of Ising clusters. 
The hull fractal dimension of these clusters has been determined as 
d,~= 11/8. (36,28) So, for our ring, v = 8/11. 

As discussed below, the bulk t/ exponent can also be determined by 
considering 

t Wcomp.withX l 

x [ e x p ( - 2 L ) ]  Irl (3.4) 

where the sum in the numerator is again over self-avoiding paths connect- 
ing x to y and constrained to avoid the hull contours in S. For  example, 
for type (a) walks, contributions to this sum can be diagrammatically 
represented as in Fig. 2, where this time dashed regions correspond to + 
hexagons, and white regions to - hexagons. In this case, without consider- 
ing the normalizing denominator, each step l of the SAW from x to y 
implies a factor Kt, while each step of the hulls takes a factor e x p ( - 2 L ) .  
By putting Kt-exp(-2Lc) and L = Lc, it is easy to verify that ~# becomes 
the correlation function 6 (SxSy) for an Ising model on the hexagonal 
lattice with a coupling Kising , such that tanh(K~sing)=exp(-2L~). By 
duality, this Ising model is also critical. Moreover, at Kz= e x p ( - 2 L c )  the 

6Notice  that this Ising model  is not  the one entering in the Hamil tonian (3.1), which is 
defined on the dual, t r iangular  lattice. 
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correlation (r clearly coincides with (Sx Sy) as expressed, on the basis of 
high-temperature diagrams, in tanh(Kisi,g). 

This is sufficient to conclude that the walk W has a bulk correlation 
exponent t/ equal to 1/4, as appropriate to (SxSy) for the critical Ising 
model. ~37) From this, 7--14/11 also follows. The 7 derived here, as well as 
the previously determined v, are fully consistent with accurate numerical 
extrapolations in ref. 27. 

The point described above is expected to be multicritical, like the 
O'-point discussed in Section 2. At variance with the case of the O'-point 
model with uncorrelated vacancies, it is not possible to express in an 
explicit and local form the effective interactions caused by the correlated 
vacar~cies on the walk. However, we would expect the effective interactions 
to be of finite range except possibly when the vacancies are at Ising criti- 
cality and have themselves an infinite range. In any case, consistent with 
the fact that in the n --* 0 limit the full free energy content of the model (3.1) 
is given by the Ising part, the walk exponents at the multicritical point can 
be extracted from the same conformal grid, with c = 1/2, as for the critical 
Ising spin problem. (24) 

Below we consider several surface critical regimes at this multicritical 
point. 

We start from a special regime. Let us consider the case of type (a) 
walks. Equations (3.1)-(3.3) do not fully specify the boundary conditions. 
Walks of type (a) are not allowed to step on hexagons with a + sign. Since 
the border of the Ising model is assumed with open conditions, we can 
decide that only one factor of the type ( 1 -  ai*(t))/2 is present in Eq. (3.1) 
when l belongs to the boundary. With this choice, which makes the border 
accessible to the walk, one can easily see that the average radius of a 
ring with one point on the boundary would be given by expression (3.3), 
where _r is made up of a collection of closed loops and by a number of self- 
avoiding paths with both ends on the boundary. The loops do not touch 
the border. Indeed, for a triangular Ising system with open boundary 
conditions these loops and this path are the possible lines separating the + 
and - islands. 

In Fig. 8a we give a schematic representation of the contributions to 
the denominator of Eq. (3.3) in this case. In the numerator the diagrams 
are the same, and the ring radius appears as an extra factor multiplying the 
weight. 

We did not succeed in determining the fractal dimension of such a 
ring. However, a simple modification of the interactions with the border 
makes this determination possible. Let us consider in Eq. (3.3) a step 
fugacity Kj = Kt exp( + 2Lc) for l belonging to the border. With this choice 
it is clear that, when Kt=Kc=exp(-2Lc), and L=Lc in Eq. (3.3), the 



36 Stella et  al. 

O 

(a) 

(b) 

Fig. 8. (a) Representation of a typical contribution to the denominator of the quantity in 
Eq. (3.3). In this case the step fugacity on the boundary is Kt= K. (b) Diagrams for the case 
with K/= Kexp(2Lc) on the boundary. Steps of the ring belonging to the boundary are not 
represented by the heavy line and have an associated weight equal to unity. 

weight associated with steps of the ring on the border in the configuration 
shown in Fig. 8b is just unity. 

In this way the statistics of the ring becomes the same as that of hulls 
of Ising clusters with at least one hexagon on the border. But the geometry 
of critical Ising clusters at an open boundary is known. (38) The fractal 
dimension of their intersection with the boundary is 5/6, whereas the over- 
all dimension of the hull is 1 1/8, as pointed out above. This gives the key 
to establishing that the ring in the situation just considered is in a special 
regime. Indeed, special regimes are characterized by 

( N , > ~ ( K c - K )  -os for K ~ K  c (3.5) 

with 0 < ~b s < 1. In our case, taking into account that (Kc - K) ~ 1 / ( N ) ,  we 
have ( N s ) ~  ( N )  (5/6)(8/11), and conclude that ~bs=20/33. We notice that 
the special regime just identified is one in which a sort of attraction of the 
ring by the boundary operates; this attraction is a consequence of the 
modification K-- ,  K exp(2Lc) for hexagonal edges on the boundary. 

To get r/s and 71 we need to consider the correlation function (3.4) for 
x and y in the neighborhood of the border. The typical contributions to the 
numerator  of Eq. (3.4) are sketched in Figs. 9a and 9b. 

The diagrams are the high-temperature ones for a hexagonal-lattice 
Ising-model correlation G1 = (S, ,S r) in the presence of, e.g., plus bound- 
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(a) 

- ~  Y 

(b) 
Fig. 9. (a) Diagram for the correlation N of type (a) walk for the case in which the SAW 
connecting x to y steps on the border. As in Fig. 8b, the choice Kl=Kexp(2Lc) on the 
boundary gives an effective weight 1 to steps of the walk on the surface. (b) Diagram for •, 
in case the type (a) SAW from x to y does not step on the boundary. 

ary conditions. Indeed, consider an Ising model with border + as in 
Fig. 10a. 

For  such a model, diagrams contributing to the numerator of G 1 in a 
high-temperature diagrammatic expansion in tanh(K~sing)= e x p ( -  2Lc) can 
be separated into three different groups. In the first one we consider those 
sketched in the Fig. 10b, which are characterized by the presence of a 
self-avoiding path joining x to y, and not touching the border. 

In the second and third groups, we can put those sketched in Figs. 10c 
and 10d, respectively. 

The diagrams in both Figs. 10c and 10d have paths connecting x and 
y to the boundary. The difference between the two groups amounts to the 
fact that in Fig. 10c there is no path with both ends on the boundary 
enclosing simultaneously x and y. In Fig. 10d there is one such path. The 
group of diagrams represented by Fig. 10d is that in which there is at least 
one of such enclosing path. 

Diagrams in Fig. 10b for G1 are also found, with identical weight, in 
~ql- The same holds for diagrams in Fig. 10c. As a matter of fact all these 
diagrams appear in both G~ and N~ with the same multiplicity equal to 1. 
In contrast, the diagrams sketched in Fig. 10d contribute with different 
multiplicities to G1 and N1. Indeed, while they enter with multiplicity 1 in 
G~, in the case of N~ there are always two different choices for the walk 
joining x to y leading to the same overall diagram. Thus, this multiplicity 
2 is due to the fact that in N~ we distinguish between walk and hulls, even 
if we fix their weights as equal. 
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Fig. 10. (a) Boundary condition for an Ising problem on a hexagonal lattice, whose high- 
temperature expansion for (SxSy)  leads to the same diagrams as in Figs. 9a and 9b. 
(b, c, d) Three types of diagrams for G 1 = (SxSy)  of the Ising model with boundary condition 
as in panel (a). Each step has a weight tanh(Ki~ing ) = exp(-2Lc) .  



Boundary Critical Behavior of 2D SAWs 39 

§ 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7  

Fig. 11. Type (b) ring with + boundary condition on the dual triangular lattice. With these 
conditions, the Hamiltonian in Eq. (3.1) must contain terms of interaction between the 
boundary fluctuating hexagons and the fixed ones. 

We expect GI=(SxSy> to factorize into the nonzero product 
<Sx><Sy> for I x - y l  ~ oe (x and y at finite distance from the boundary). 
Indeed, although the Ising system is at criticality, and thus has no long- 
range order in the bulk, the spins at x and y feel the action of the + 
boundary conditions. Since in f#l we have the same diagrams as in G1, with 
multiplicities which are either the same or double, with their contribution 
positive, we conclude also that fql does not go to zero for I x -  Yl -+ oe. This 
means that at the special point of our walks qs=0,  thus ~1 = 15/11. 7 

This value of h has been also checked numerically using an efficient 
Monte Carlo method already successfully applied to interacting polymer 
model. (4) Such an analysis gives 7~ = 1.4 ___ 0.1, in good agreement with the 
theoretical prediction. 

Up to now we have considered open boundary conditions for the spins 
on the dual, triangular lattice. In order to learn something about possible 
ordinary regimes of surface criticality, let us consider below type (b) walks, 
with the + boundary condition for the triangular Ising problem, as 
sketched in Fig. 11. 

Clearly in this case ring statistics will coincide with hull statistics if the 
step fugacity is put everywhere equal to Kt=  exp( -2Lc)  , also for the bonds 
on the boundary. Unfortunately, the fractal dimension of a hull on the 
boundary in the presence of closed, + conditions in the Ising model is not 
known exactly; it is very plausible, however, that, while the global hull 
fractal dimension remains 11/8, the dimension of its intersection with the 

7 In ref. 16, on the basis of a purely numerical investigation, we reported h = 0.99 ___ 0.04 at the 
special point, which suggested a value h = 1, as now found (see below) for one of the 
ordinary regimes. However, the numerical investigation there, being not based on a detailed 
analysis of the effects of all possible boundary conditions, like the present one, was fairly 
inaccurate, and its results partly spurious. E.g., no attempt was made there to distinguish 
between different ordinary regimes, as we do here. 
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Fig. 12. Sketch of a typical configuration occurring in the numerator of N1 for type (b) walks 
in the presence of + boundary conditions for the Ising model. 

boundary is equal to zero, even if the hull remains grafted at some point 
on the boundary. This is because the + condition acts as a sort of repul- 
sion from the boundary for hexagons with spin - 1 .  We thus expect that 
now the type (b) walk will be in an ordinary type of critical regime. For  
such a case it still makes sense to discuss the qs and ~1 exponents. 

It is easy to realize that the diagrams contributing to the numerator of 
fr in the last case considered above are those of the type shown in Fig. 12. 

This, by duality, makes f#l equal to the correlation function of a 
hexagonal Ising model with open boundary conditions at the critical point, 
tanh(Kasing) = exp( -2Lc) .  This function is know to decay to z e r o  a s  (39) 

Gl(x, y ) =  ( S x S y ) ' ~  Ix -Y1-1  

Thus qs= 1 and 71 = 1. This last prediction, together with the claim 
that the fractal dimension of the ring on the boundary should be zero, 
have been tested numerically. We obtained 71 = 1.00__+0.05 and (Ns), ,~ 
(Kc - -  K )  0"03 -+ 0.05 

Finally, it is interesting to consider the case of a walk of type (a) with 
the same + boundary conditions of the previous case. Since the walk can 
develop only on - hexagons, the repulsion of the boundary is even 
stronger, and we anticipate ordinary behavior again. The discussion of f~l 
is easy also in this case; while the diagrams contributing to its denominator 

§ 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7 2 4 7  

Fig. 13. Diagrams of the numerator of ~l for type (a) walks in the presence of + boundary 
conditions. 
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are exactly the same as in the previous case, now clearly the numerator has 
contributions of the type sketched in Fig. 13. 

With a reasoning similar to that made for the ordinary O'-point, we 
conclude that this time the leading asymptotic behavior of fr should be 
given by a watermelon function with L = 3 for the critical Ising model. It 
turns out that for this function x~= 3 = 7/2; thus qs = 7 in this case while 
~1 = -13/11. 

This finding is rather interesting because it implies that for walks on 
correlated vacancies more than one ordinary surface regime can be 
realized, due to the effect of different boundary conditions imposed on the 
vacancies and on the walks. 

Unfortunately the last prediction for 71 is also a very hard one to 
verify numerically, due to the difficulty in sampling walk configurations of 
the type sketched in Fig. 13. These configurations require the presence of a 
very big - cluster enclosing and connecting both x and y, and this is 
rather difficult to sample in the presence of the + boundary conditions. 

It is worth noticing that all the above results for surface exponents 
with correlated vacancies are consistent with the assumption of a central 
charge c = 1/2, and thus are further confirmation of this value. 

4. S U R F A C E  C R O S S O V E R  E X P O N E N T  OF 
N O N I N T E R A C T I N G  S A W  

The results obtained in the previous sections are a clear illustration of 
how powerful the vacancy approach can be for describing surface critical 
phenomena of interacting SAW. One of the advantages of this approach is 
that, as in the bulk case, vacancies provide substantial extra geometrical 
and physical insight into critical exponents, especially the crossover one, 
which is related to cluster fractal dimensions in all cases. One may wonder 
whether comparable insight could be provided by the vacancy approach in 
other, even relatively less complex cases. 

When the SAW is not self-interacting, but only attracted by the 
boundary, it is by now established, both numerically and on the basis of 
conformal invariance results, that ~b~ = 1/2 at the special transition. (15'21) 

Below we reinterpret this result in terms of the geometry of percolation 
clusters. 

Consider percolation on a semi-infinite square lattice. Elementary 
squares can be occupied or vacant with probability p or 1 - p, respectively. 

A cluster is considered connected if one can join any couple of its 
squares by a path of nearest-neighbor squares of the cluster itself: squares 
sharing only one corner are thus considered as disconnected. 
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It was first noticed in ref. 40 that different definitions of the external 
perimeter of connected clusters can lead to different fractal dimensions. In 
general one defines the hull as constituted by the set of all edges of 
occupied squares separating the cluster from "external" vacant squares. 
In one case one includes in this set all the vacant squares that can be joined 
to the boundary at infinity through nearest-neighbor or next-nearest- 
neighbor vacant squares with connections. Alternatively, one can restrict 
the last condition by considering connections through nearest-neighbor 
vacant squares only. For  a cluster like that in Fig. 14, the above two defini- 
tions clearly give different hulls. According to the first one, the hull includes 
the external perimeter plus the internal contour including vacant squares 
(dotted region) connected to infinity by paths through the point A. In this 
way the hull has configurations of the type appropriate to the static 
silhouette of a one-tolerant closed trail, i.e., a lattice walk which is allowed 
to self-intersect, but not to step more than once on a given lattice edge. 

According to the latter definition, on the other hand, contours of regions 
like the dotted one in Fig. 14 are not included. Thus self-intersections are 
fully excluded and the hull configurations are those of a self-avoiding ring. 

In the bulk a numerical investigation (4~ showed that only the defini- 
tion of hull implying one-tolerant trail silhouette shapes conforms to the 
expected hull fractal dimension equal to 7/4. (28) The second definition, 
restricting the hull configurations to those of a self-avoiding ring, implies a 
hull fractal dimension which, within the numerical accuracy, coincides with 
that of noninteracting SAW (i.e., 4/3). 

Fig. 14. Percolation cluster on a square lattice. The shaded region corresponds to sites of the 
cluster. The boundary of the dotted region might or might not be included in the hull 
definition. 
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In the spirit of the vacancy approach we can consider the statistics of 
this last type of hull as identical to that of an interacting self-avoiding ring. 
For a given configuration, the Boltzmann factor due to vacancy-mediated 
interactions can be written as 

pN~(1 _ p)U2 (4.1) 

where N1 and N 2 a r e  the total numbers of squares respectively internal and 
external to the ring, whose occupation status has to be specified in order 
to identity the given ring with a hull configuration. No matter how com- 
plicated the counting rules for N1 and N 2 actually are, the important fact 
here is that these rules are clearly consistent with assuming a set of local 
interactions for the ring. What we deduce from the above numerical 
investigations is that, at p=pc=0.592746...,(41~ the square lattice site 
percolation threshold, and with a ring step fugacity Kc = 1, the interacting 
SAR must be critical, with v = 3/4. This means that the vacancy-induced 
interactions are not attractive enough to induce O or collapsed bulk 
behavior. 

Considering the same SAR problem at a linear boundary in semi- 
infinite geometry, we understand immediately that the boundary will exert 
a sort of attractive interaction on the ring. Most interesting for us here is 
the fact that, for hulls defined according to the two alternatives specified 
above, the intersection with the boundary has a weight, as a function of p, 
which is the same if the intersection is the same, in spite of the fact that the 
global hull profile is defined very differently in the two cases. Indeed, 
enclosures like the dotted one in Fig. 14 can obviously never reach an edge 
on the boundary of the lattice. So, whether such enclosures are counted or 
not in evaluating the total hull length, the statistics of the intersection of 
the hull with the boundary is left unaffected. This means that if we fix 
P = Pc ad K =  K c = 1 as step fugacity for our SAR, its intersection with the 
boundary must have the same fractal dimension as the intersection of the 
critical percolation hull, defined in the proper sense (i.e., with enclosures). 
This dimension, as we discussed in Section 2, is equal to 2/3. (25~ Our self- 
avoiding ring at p = Pc and K =  Kc = 1 has thus an average number of 
steps on the boundary ( N s )  growing a s  R 213 if R is the average radius of 
gyration with respect to the center of mass. Since, as we said above, one 
should have 

we conclude 

R ~ ( K c -  K) -3/a, K-+ K 7 (4.2) 

( N , ) ~ ( K c - K )  ,/,2, K---+K7 (4.3) 
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So, p = Pc and K =  Kc = 1 locates the special transition point for our 
ring on the boundary. Since the v exponent for the ring is 3/4, this point 
must be in the same universality class as the special transition of nonin- 
teracting SAW. For such a transition the surface crossover exponent is thus 
~bs= 1/2, as recently established on the basis of conformal invariance 
considerations, ~21) in full agreement with the numerical results. ~2~ 

5. C O N C L U S I O N S  

In the present work we have shown how the idea of vancancy- 
mediated interactions can be exploited to give an exact and complete 
description of the surface criticality of interacting polymer models in d = 2 
when the bulk behavior is simultaneously multicritical. The best known 
case is that of a SAW at the bulk O transition, which can simultaneously 
undergo an adsorption transition upon increasing the attractive interaction 
with the boundary. We showed that a careful discussion of boundary 
conditions for the so-called O'-point model with uncorrelated vacancies 
allows identification and exact characterization of the ordinary and special 
O'-regimes. Even if the exact results obtained here for the exponents strictly 
refer to a specific model of polymer collapse and adsorption, a very recent 
extensive series of investigations of a more standard model ~18) seems to 
support rather nicely universality of surface and bulk O behavior in d = 2. 8 
The results obtained here for 71o and 71sp eliminate, in our opinion, the 
most serious source of doubts about O-universality. Indeed, the numerical 
estimates of these exponents also for other models ~7'15) in the literature do 
not show major discrepancies with our O'-model results. This was not of 
course the case with the previous conjecture, 71o = 8/7, ~3) which is revealed 
here to be incorrect. 

In spite of the possibility that numerical problems could still hinder 
progress on the general issue of verifying O-point universality, the fact that 
now a full set of bulk and surface exponents has been determined in a given 
model is certainly a useful step forward, in our opinion. 

Correlated vacancies were already known to be able to produce new 
b u l k  multicritical phenomena for interacting SAW in d = 2 .  ~27) Here we 

8 At variance with the conclusions of ref. 18, the authors of a recent Monte Carlo study (19) of 
standard O-point models interpret discrepancies of their results from O'-point exact 
exponents as indications of nonuniversality. However, the numerical verification of such 
universality should be made, in our opinion, with a most generous attitude as far as 
confidence limits of the results are concerned. A further important consistency test of such 
methods should be their application to cases without interactions, specifically to the study 
of the special transition of SAW. 
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have shown tha t  the vacancy  a p p r o a c h  to surface cri t ical  p h e n o m e n a  can 
lead also in this case to in teres t ing new exact  results for cri t ical  exponents .  

A ra ther  r emarkab l e  fact we demons t r a t ed  is also the poss ib i l i ty  of more  
than  one o rd ina ry  regime for a S A W  at the new bulk  mul t icr i t ica l  point .  
Indeed  when surface in terac t ions  are  med ia t ed  by cor re la ted  vacancies,  
different b o u n d a r y  condi t ions  imposed  on these vacancies can lead to dif- 
ferent universal i ty  classes for o rd ina ry  surface behavior .  This somewha t  
unexpec ted  feature is quite in t r iguing and  ought  to be further invest igated.  

A final result  we presented  here is a new der ivat ion,  based  on the 
geomet ry  of pe rco la t ion  vacancies,  of the value ~b s = 1/2 for the surface 
crossover  exponen t  of non in te rac t ing  SAW. This der iva t ion  shows that  the 
idea of  vacancies  can be ex tended  to cases in which the bulk  behav io r  is 
not  mult icr i t ical .  In  addi t ion ,  the new in te rp re ta t ion  of ~b s shows tha t  the 

connec t ion  between S A W  prob lems  and  pe rco la t ion  is deepe r and  wider  
than  a l ready  shown by ear l ier  ~3'27) and  present  deve lopments  concerning  
the O ' -po in t  and  re la ted issues. 
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